pystruct.learners.
PrimalDSStructuredSVM
(model, max_iter=100, C=1.0, verbose=0, n_jobs=1, show_loss_every=0, logger=None)[source]¶Uses downhill simplex for optimizing an unconstraint primal.
This is basically a sanity check on all other implementations, as this is easier to check for correctness.
Methods
fit (X, Y) |
|
get_params ([deep]) |
Get parameters for this estimator. |
predict (X) |
Predict output on examples in X. |
score (X, Y) |
Compute score as 1 - loss over whole data set. |
set_params (**params) |
Set the parameters of this estimator. |
__init__
(model, max_iter=100, C=1.0, verbose=0, n_jobs=1, show_loss_every=0, logger=None)¶get_params
(deep=True)¶Get parameters for this estimator.
Parameters: | deep: boolean, optional :
|
---|---|
Returns: | params : mapping of string to any
|
predict
(X)¶Predict output on examples in X.
Parameters: | X : iterable
|
---|---|
Returns: | Y_pred : list
|
score
(X, Y)¶Compute score as 1 - loss over whole data set.
Returns the average accuracy (in terms of model.loss) over X and Y.
Parameters: | X : iterable
Y : iterable
|
---|---|
Returns: | score : float
|
set_params
(**params)¶Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter>
so that it’s possible to update each
component of a nested object.
Returns: | self : |
---|