pystruct.learners.
StructuredPerceptron
(model, max_iter=100, verbose=0, batch=False, decay_exponent=0, decay_t0=10, average=False, n_jobs=1, logger=None)[source]¶Structured Perceptron training.
Implements a simple structured perceptron with optional averaging. The structured perceptron approximately minimizes the zero-one loss, therefore the learning does not take
model.loss
into account. It is just shown to illustrate the learning progress.As the perceptron learning is not margin-based, the model does not need to provide loss_augmented_inference.
Parameters: | model : StructuredModel
|
---|---|
Attributes: | w : nd-array, shape=(model.size_joint_feature,)
``loss_curve_`` : list of float
|
Methods
fit (X, Y[, initialize]) |
Learn parameters using structured perceptron. |
get_params ([deep]) |
Get parameters for this estimator. |
predict (X) |
Predict output on examples in X. |
score (X, Y) |
Compute score as 1 - loss over whole data set. |
set_params (**params) |
Set the parameters of this estimator. |
__init__
(model, max_iter=100, verbose=0, batch=False, decay_exponent=0, decay_t0=10, average=False, n_jobs=1, logger=None)[source]¶fit
(X, Y, initialize=True)[source]¶Learn parameters using structured perceptron.
Parameters: | X : iterable
Y : iterable
initialize : boolean, default=True
|
---|
get_params
(deep=True)¶Get parameters for this estimator.
Parameters: | deep: boolean, optional :
|
---|---|
Returns: | params : mapping of string to any
|
predict
(X)¶Predict output on examples in X.
Parameters: | X : iterable
|
---|---|
Returns: | Y_pred : list
|
score
(X, Y)¶Compute score as 1 - loss over whole data set.
Returns the average accuracy (in terms of model.loss) over X and Y.
Parameters: | X : iterable
Y : iterable
|
---|---|
Returns: | score : float
|
set_params
(**params)¶Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter>
so that it’s possible to update each
component of a nested object.
Returns: | self : |
---|