pystruct.learners.SubgradientLatentSSVM(model, max_iter=100, C=1.0, verbose=0, momentum=0.0, learning_rate='auto', n_jobs=1, show_loss_every=0, decay_exponent=1, decay_t0=10, break_on_no_constraints=True, logger=None, averaging=None)[source]¶Latent Variable Structured SVM solver using subgradient descent.
Implements a margin rescaled with l1 slack penalty. By default, a constant learning rate is used. It is also possible to use the adaptive learning rate found by AdaGrad.
This class implements online subgradient descent. If n_jobs != 1, small batches of size n_jobs are used to exploit parallel inference. If inference is fast, use n_jobs=1.
| Parameters: | model : StructuredModel 
 max_iter : int, default=100 
 C : float, default=1. 
 verbose : int, default=0 
 learning_rate : float or ‘auto’, default=’auto’ 
 momentum : float, default=0.0 
 n_jobs : int, default=1 
 show_loss_every : int, default=0 
 decay_exponent : float, default=1 
 decay_t0 : float, default=10 
 break_on_no_constraints : bool, default=True 
 averaging : string, default=None 
  | 
|---|---|
| Attributes: | w : nd-array, shape=(model.size_joint_feature,) 
 ``loss_curve_`` : list of float 
 ``objective_curve_`` : list of float 
 ``timestamps_`` : list of int 
  | 
Methods
fit(X, Y[, H_init, warm_start, initialize]) | 
Learn parameters using subgradient descent. | 
get_params([deep]) | 
Get parameters for this estimator. | 
predict(X) | 
|
predict_latent(X) | 
|
score(X, Y) | 
Compute score as 1 - loss over whole data set. | 
set_params(**params) | 
Set the parameters of this estimator. | 
__init__(model, max_iter=100, C=1.0, verbose=0, momentum=0.0, learning_rate='auto', n_jobs=1, show_loss_every=0, decay_exponent=1, decay_t0=10, break_on_no_constraints=True, logger=None, averaging=None)[source]¶fit(X, Y, H_init=None, warm_start=False, initialize=True)[source]¶Learn parameters using subgradient descent.
| Parameters: | X : iterable 
 Y : iterable 
 constraints : None 
 warm_start : boolean, default=False 
 initialize : boolean, default=True 
  | 
|---|
get_params(deep=True)¶Get parameters for this estimator.
| Parameters: | deep: boolean, optional : 
  | 
|---|---|
| Returns: | params : mapping of string to any 
  | 
score(X, Y)[source]¶Compute score as 1 - loss over whole data set.
Returns the average accuracy (in terms of model.loss) over X and Y.
| Parameters: | X : iterable 
 Y : iterable 
  | 
|---|---|
| Returns: | score : float 
  | 
set_params(**params)¶Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.
| Returns: | self : | 
|---|